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Why have HABs expanded
globally?
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Nutrient delivery processes
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Nitrogen Cycle
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Fig. 4. Rates of nitrogen flux in the modern nitrogen cycle depend on the effidency of the transformations between reservoirs.
Arrow size reflects relative size of the flux. The dark brown arrows represent anthropogenic inputs (25, 45, 46, 52, 53, 68, 69).



Nitrate levels In rivers are related to
watershed population density.
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Fertilizer is the largest source of nitrogen to
coastal waters

Fertilizer Use in China, India, and the United States,
1960-2004
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Some HABs are directly
caused by anthropogenic
nutrient loading...
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Degraded water quality from increased nutrient pollution promotes the development and
persistence of many HABs and is one of the reasons for their expansion in the U.S. and other nations;
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The composition-not just the total quantity-of the nutrient pool impacts HABs;

High-biomass blooms must have exogenous nutrients to be sustained;

Both chronic and episodic nutrient delivery promote HAB development;

Recently developed tools and techniques are already improving the detection of some HABs, and
emerging technologies are rapidly advancing toward operational status for the prediction of HABs
and their toxins;

Experimental studies are critical to further the understanding about the role of nutrients in HABs
expression, and will strengthen prediction and mitigation of HABs; and

Management of nutrient inputs to the watershed can lead to significant reduction in HABs.




Freshwater cyanobacteria and their toxins
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Freshwater cyanobacteria and nutrients

i .

e As bodies of freshwater become enriched s
IN nutrients, the relative abundance of
cyanobacteria within phytoplankton

community iNCreases (rogg, 1969; Renoylds & Walsby, L

1975; Smith, 1986; Trimbee & Prepas, 1987; Renolds, 1987; Paerl,
1988b; Paerl, 1997; Watson et al., 1997; Paerl & Huisman, 2008).

o Summer phytoplankton communities are
dominated by cyanobacteria at total

phosphorus concentrations >100 pug P L

(Trimbee & Prepas, 1987; Jensen et al., 1994; Watson et al., 1997,
Downing et al., 2001).




Chlorophyll a and P in Canadian
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Presentation Notes
Now for the last part of my talk……
Many expts..only one



Interaction between temperature and

anthropogenic nutrient loading

Future climatic warming coupled
with:eutrophication may promote

Microcystis blooms|of greater
toxICIty.

Toxic Microcystis

Davis et al 2009



Nutrient loading and HABS in China:
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Prorocentrum minimum and
nitrogen
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Prorocentrum minimum and
anthropogenic DON
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Some HABSs display flexible
nutritional ecology...



Distribution of Cochlodinium polykrikoides blooms

*Highly toxic to many forms of marine life

«Cochlodinium blooms have spread across the Northern Hemisphere in the past
decade: Korea, Japan, China, Malaysia, Philippines, Indonesia, India, Spain, Italy,
Canada, Arabian Gulf, Mexico, Guatemala, Costa Rica, Puerto Rico, North
America.




Cochlodinium grows well on many N sources but quickest on DON
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Presentation Notes
After the growth formula was applied to several generations of culture growth, Michaelis-Menton curves were generated for each nitrogen source.  While all the curves look similar (click mouse) the U max of glutamic acid was well above that of the other nitrogen sources .5 .  Urea had the second highest Umax at .42.  Also of note is that even at the lowest concentrations glutamic acid had much higher growth rates.  This is an indication that like some other HABs, such as the brown tide, Cochlodinium polykrikoides utilizes organic nutrients better than inorganic and especially in culture.
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Presenter
Presentation Notes
Sampling occurred at five sites.  (click mouse)  Great Peconic Bay and Shinnecock Bay sites are larger, more open bays while (click mouse) Meeting House Creek and Old Fort Pond are smaller, much more enclosed sites. (click mouse) Flanders Bay is an intermediate site and displays characteristics of both the open bays and the smaller sites to varying degrees.  The contrasting physicality of these sites, especially Great Peconic and Shinnecock verses Meeting House and Old Fort Pond are important aspects and will play a role in the results of this research.
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15N uptake experiments were also performed on field sourced water.  Experiments were size fractionated and in all cases Cp was >68% of phytoplankton >20um. Patterns of uptake continued to along previously described patterns in that Great Peconic and Shinnecock Bays showed different uptake preferences when compared to the smaller Old Fort Pond and Flanders Bay (click mouse).  In the larger bays I again found that uptake was DON dominated with urea and glutamic acid, whereas in the smaller areas uptake was dominated by the dissolved inorganic nitrogens, most notably nitrate and nitrite.


The Interactions between
nutrients and some HABs are
ecosystem dependent.



Alexandrium red tides and paralytic shellfish
poisoning (PSP)

POISON

Saxitoxin

Alexandrium




Puget Sound, northwest USA,
Alexandrium blooms and PSP
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Alexandrium in the Puget Sound
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Fig. 2. Relationship between the growth in human population and the average
decadal maximum paralytic shellfish toxins (PST) from dinoflagellate HABs from
Puget Sound, Washington State, where continuous monitoring of paralytic shellfish
poisoning has been ongoing since the mid-1950s. Human population data for the
counties bordering Puget Sound for the past 40 years were derived from the U.S.
census (redrawn from Trainer et al., 2003).



Alexandrium blooms in New
York, USA




Presence of PSP-producing Alexandrium
|n LI and CT: 2007 2017

-'".:'! ""5"- '?. #'
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Alexandrium found at 49 of 65 sites sampled (75%)
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Presenter
Presentation Notes
Here the dots represent the highest concentrations of Alexandrium found at each site during the four year study. There a couple of things I want to highlight on this slide: 1) We found Alexandrium was present at 30 sites across LI and CT.  2) Alexandrium was found at low concentrations in CT even in areas like Mumford Cove which has had PSP closures in the past. 3) There are areas on the Eastern end of LI that have low to moderate levels of Alexandrium and it is undetermined were these cells densities are from (local population vs. possible advection from GoM bloom).  And 4) Areas like Mattituck and Northport have the highest bloom concentrations…



7,000 acre closure in Northport — Huntington Bay
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Presenter
Presentation Notes
These combined monitoring efforts led to the closure of 7000 acres of shellfish beds in Northport-Huntington Bay as mussels reached over 1mg of STX per 100g shellfish tissue.  By the way 1mg of saxitoxin is considered a lethal dose and in this case a serving of both mussels and native shellfish is more than sufficient to provide that dose.   

These shellfish were well within the range of shellfish saxitoxin values  found in Maine, with blue mussels having toxcities ranging up to 8000 ug STX/ 100g tissue and softshell clams having values up to 2500 STX per 100g tissue in areas of the Gulf of Maine.


Impact of nutrient loading on Alexandrium densities and toxicity

Hattenrath, et al, in 2010
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Presentation Notes
During this project we conducted several nutrient amendment experiments to explore the impact of nutrient loading on Alexandrium densities and toxicity.  If you follow these blue and red dotted line here you can see that the addition of compounds containing N significantly increased both cell densities and Alex toxicity.   So the big message here is more N = more Alexandrium and saxitoxin.  This work was recently published in Harmful Algae with the main point of this paper being that N from the Northport sewage treatment plant may be promoting these alexandrium blooms…


\What are the sources of
nitrogen to blooms?
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So what are the sources of nitrogen contributing to these blooms


O1°N of particulate organic matter from Northport Harbor

Hattenrath, et al, in 2010
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Presenter
Presentation Notes
Here is delta 15N of particulate organic matter through time.  Wastewater derived signatures fall into this 10-30parts per thousands range, while this bar here represents values typically measured in Central Long Island Sound.  Particulate organic matter delta N 15 values during 2007 fell within both of these ranges, whereas during 2008 values reflected those of wastewater during the Alexandrium bloom which was a signficantly large portion of the phytoplankton biomass and after bloom reflected those of Long Island Sound.  Furthermore, the delta N15 value of particulate organic matter was significantly…..

So, where are the nutrients that are supporting this large biomass bloom coming from? This figure depicts delta N15 permille of particulate organic matter through time in both 2007 here in the blue and 2008 in the red. During 2007 most values fell just slightly below wastewater derived signatures with only a few of the values reflecting those of wastewater during  the small Alexandrium bloom.  During the presence of the large Alexandrium bloom in 2008 particulate organic matter d15N values overlapped with wastewater derived values which are typically in the 10-30 range and were higher than samples collected after the bloom which reflect values previously collected in Long Island sound. These d15N values of particulate organic matter were also significantly correlated to Alexandrium cell densities and saxitoxin, suggesting that wastewater is promoting the proliferation of these toxic blooms.


Wastewater-derived nitrogen loading

oromotes PSP in Long Island Sound.
-Hattenrath et al 2010, Harmful Algae




Scudder Beach sewage
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Presenter
Presentation Notes
So, where is this waste water coming from?  The Scudder Beach sewage treatment plant with is located in the back part of the Northport Harbor, with the effluent discharge pipe located just north of the sewage treatment plant.


Nitrogen in kg/day

Acres of shellfish beds closed by PSP
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PSP in Gulf of Maine:

Alexandrium bloom: s
ME and MA fishery disasters
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Presentation Notes
PSP in US and Canada is caused by both Alexandrium tamarense and Alexandrium fundyense which are considered to be variants of the same species only distinguishable by the presence or absence of a ventral pore and thusly labeled as a North American ribotype.  PSP has been documented in Canada for over 100years.  It was first documented in Maine in 1958.  In 1972 a bloom reaching over 1 million cells per L was documented in southern Maine, New Hampshire and Massachusetts and for the first time shellfish toxicity was reported in these southern regions.  Since then these blooms have been an annual occurrence. In 2005 one of the worst blooms on record caused the closure of over 40000 square km of shellfish beds declaring fishery disasters in both Maine and Mass.  That year the shellfish industry lost $3 million per week in revenue.  
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Presentation Notes
These blooms have been able to persist and magnify throughout the years due to a life history strategy that Alexandrium possesses in which during a bloom sexual reproduction is induced by some environmental cue, usually nutrient limitation, these cells form gametes which find a mate and fuse together forming a zygote which matures into a cyst, these cysts fall to the sediments and overwinters until ideal temperatures, 5C and above, cues the cyst to germinate and form a bloom.  


In the Gulf of Maine, cysts beds are the best predictor of blooms.

*Models do not require a nutrient-dependent growth rate.
sNutrients do not affect bloom (Anderson et al 2008)
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Presenter
Presentation Notes
Researchers at Woods Hole Oceanographic Institute have developed models using cyst bed distribution and densities in combination with physical transport of these cysts to predict bloom events.  As you can see here cyst deposition in 1997 consisted of a large low density cyst bed with very few patches consisting of high cyst densities, this resulted in a small scale bloom in 1998.  Whereas in 2004 there was  a large high density cyst bed which resulted in that large 2005 bloom that declared ME and MA federal disaster areas.   Furthermore, the ability of these researchers to build successful predictive models without using a nutrient dependent growth rate suggests that nutrients play a smaller role than cysts do in the Gulf of Maine system.



In the Gulf of Maine, cysts beds are the best predictor of blooms.

*Models do not require a nutrient-dependent growth rate.
sNutrients do not effect bloom (Anderson et al 2008)
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Presentation Notes
Researchers at Woods Hole Oceanographic Institute have developed models using cyst bed distribution and densities in combination with physical transport of these cysts to predict bloom events.  As you can see here cyst deposition in 1997 consisted of a large low density cyst bed with very few patches consisting of high cyst densities, this resulted in a small scale bloom in 1998.  Whereas in 2004 there was  a large high density cyst bed which resulted in that large 2005 bloom that declared ME and MA federal disaster areas.   Furthermore, the ability of these researchers to build successful predictive models without using a nutrient dependent growth rate suggests that nutrients play a smaller role than cysts do in the Gulf of Maine system.



Some HABs dominate when
Inorganic nutrient levels are
low...



Absent of nutrient limitation, diatoms
grow fastest.
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Diel Vertical Migration, Gymnodinium catenatum

Photosynthesize by day.
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Most marine HABs are dinoflagellates;
most dinoflagellates are mixotrophic.

Photosynthesis
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Feeding by mixotrophic dinoflagellates on
cyanobacteria Synechococcus

Heterocapsa rotundata

Cochlodinium polykrikoides Prorocentrum micans

Scale bar = 10 um

Jeong et al (2005a) Aquatic Microbial Ecology 41:131



Protists can ingest prey of equal or larger size

than themselves
; d u:;‘i - .1 '.!

Berge et al. 2012

Dinoflagellate K. armiger swarms and attacks a copepod



Some non-dinoflagellate
HABs also dominate when
Inorganic nutrient levels are

low...
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Current US distribution of A(reococcus anophagefferens
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Chincoteague Bay, MD/VA

Location of Brown Tide Bloom

Brown Tide Cells Detected

Anderson et al., 1993; Popels et al., 2003




Unlike other algal blooms, brown tides are not
caused by inorganic nitrogen loading...
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Organic nutrients and brown tide
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Growth of axenic A. anophagefferens cultures exclusively on complex, organic nitrogen
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Nutrients and the Aureococcus genome

Niche of harmful alga Aureococcus anophagefferens
revealed through ecogenomics

Christopher J. Gobler®®", Dianna L. Berry®?Z, Sonya T. Dyhrman®?, Steven W. Wilhelm®2, Asaf Salamov®,
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DON enzymes In Aureococcus
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Theygrnlc nlche

Many phytb“‘b’lankton speC|es rely on morgamc nutrients and
sunlight to grow.

W e

—~Genomic, field, and lab studies have.demonstrated A.
anophagefferens can hydrolyze and utilize complex DON and
DOC compounds (muitoliand, et at:2002: Berg et al., 1997, 2002, 2008; Fan et al 2003).

While other species are ‘starving’ for nitrogen and / or
carbon, A. anophagefferens can use organic nutrients to grow.




Heterotrophy among phytoplankton

L Strict non-phototroph Strict non-phagotroph

Forams, Radiolaria, Acantheria > Diatoms

<Chlurophytes (including Prasinophytes)

Prymnesiophytes

Chrysomonads ==

Ciliates —

HABs Dinoflagellates >
Bicosoecids, Kinetoplastida,
Choanoflagellates Eustigmatophytes,
Pelagophytes, Cryptophytes

Mitra et al 2014




N vs P control of cyanobacteria




Global distribution of Microcystis
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* Produces the hepatotoxin, microcystin;
toxin synthesis genes well
characterized.

e Sequenced, well-annotated genome
available. T ke e, ush 201
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Complete Genomic Structure of Microcystis
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Presenter
Presentation Notes
One of the most common, bloom forming cyanobacteria in freshwater ecosystems is Microcystis aeruginosa

This species can be found around the globe and typically blooms in shallow, eutrophic waters when temperatures rise above 15-20 deg C where there is long residence times. Examples include lakes, ponds, and reservoirs. 

Cells are typically 2-8um in diameter and often form colonies of 1000’s of cells per colony.

The species can regulate buoyancy due to the presence of gas vesicles, which assist in it’s ability to dominate waters that it occurs in.
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Eutrophication of lakes cannot be controlled by
reducing nitrogen input: Results of a 37-year
whole-ecosystem experiment

David W. Schindler**, R. E. Hecky?*, D. L. Findlay5, M. P. Stainton®, B. R. Parker*, M. J. Paterson’, K. G. Beaty5, M. Lyng5,
and 5. E. M. Kasian®

*Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; *Department of Biology, University of Minnesota,
Duluth, MN 55812; and *Freshwater Institute, Canadian Department of Fisheries and QOceans, Winnipeg, MB, Canada R3T 2N6
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Rapid growth of Microcystis
without orthophosphate
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Effects of P limitation on gene expression
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Without P was less than 2 micromolar
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Quantitative expression of target genes in P
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Presentation Notes
Expression of phoX was correlated with alkaline phosphatase activity (p=0.07).
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Toxic strains of Microcystis were promoted by
nutrients more frequently than non-toxic strains.
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Linking nitrogen and microcystin
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Microcystin content
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Harke and Gobler, 2013, PL0oS One



Down-regulation of microcystin synthase
under low nitrogen, all treatments

Log dissolved inorganic nitrogen (LM)
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State that microcystin per cell content after N addition

Day 5 = 0.06 pg per cell
Day 8 = 0.14 pg per cell
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Ecology Letters, (2014) 17 736742 dol: 1001111/ ele. 12280

Stoichiometric regulation of phytoplankton toxins
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LETTER Stoichiometric regulation of phytoplankton toxins
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Nutrient-controlled niche
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MODIS Cyanobacterial Index from 10 September 2013.

Absent

http://www.glerl.noaa.gov/res/Centers/HABS/lake_erie_hab/lake_erie_hab.html

LETS

LET6
@ LET4

LET7 ® LET3

7

Maumee River

Harke et al, 2015, ES&T

Lake Erie transect,
September 2013

LET2

LET1

Esri, DeLorme, GEBCO, NOAA NGI



Lake Erie metatranscriptomes
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Orthophosphate and dominant cyanobacteria
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Effects of nitrogen and phosphorus loading on
cyanobacteria in Lake Erie
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Incubation experiment: The relationship between
nitrogen supply and microcystin synthesis
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Orthophosphate and dominant cyanobacteria
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Implications of reducing N and/or P
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Are marine HABs always N-limited?

Brown tides caused by Aureococcus



ECOHAB: Resolving the Effects of Resource Availability,
Predation and Competition on Brown Tide Dynamics Using
Metatranscriptomics
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Brown tide, Quantuck Bay, NY
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Nitrogen, phosphorus, brown tide

~ Brown tides can transition from spring

P-limitation to summer N-limitation
(Gobler et al 2002, 2004, 2005).
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Conclusions

There are multiple examples of HABs whose biomass AND
toxicity are directly promoted by nutrient loading.

Many important exceptions to this relationship exist: Some
HABSs thrive under low DIN.

Nutrient ratios also influence HABs biomass and toxicity.

Marine HABs can be P-limited; freshwater HABs can be N-
limited.

The extent to which HABs are controlled by nutrients must be
assessed on a case-by-case basis: HAB-species and
ecosystem-specific.
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